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Abstract Between 2013 and 2015, the northeast Pacific Ocean experienced the warmest surface
temperature anomalies in the modern observational record. This “marine heatwave” marked a shift of
Pacific decadal variability to its warm phase and was linked to significant impacts onmarine species as well as
exceptionally arid conditions in western North America. Here we show that the subtropical signature of this
warming, off Baja California, was associated with a record deficit in the spatial coverage of co-located
marine boundary layer clouds. This deficit coincided with a large increase in downwelling solar radiation
that dominated the anomalous energy budget of the upper ocean, resulting in record-breaking warm sea
surface temperature anomalies. Our observation-based analysis suggests that a positive cloud-surface
temperature feedback was key to the extreme intensity of the heatwave. The results demonstrate the extent
to which boundary layer clouds can contribute to regional variations in climate.

Plain Language Summary The northeast Pacific Ocean experienced a “marine heatwave” between
2013 and 2015. This was characterized by the highest surface temperatures ever recorded in a vast swath of
the ocean from near the Gulf of Alaska to off the coast of Baja California. The unprecedented warming
event was linked to significant impacts on marine life and a severe drought in western North America. We
analyze satellite data to show that the heatwave was associated with a record decrease in the typically high
cloudiness over an area of the Pacific off Baja California that is roughly half the size of the contiguous United
States. Such a deficit in cloud cover coincided with a large increase in the amount of sunlight
absorbed by the ocean surface, resulting in extremely warm temperatures. Our findings suggest that
a reinforcing interaction (or positive feedback) between clouds and ocean surface temperature can
strongly contribute to significant and difficult-to-predict changes in marine climate.

1. Introduction

In late 2013, an unusually warm water mass or “Blob” appeared in the midlatitude northeast (NE) Pacific near
the Gulf of Alaska, reaching surface temperatures higher than any observed since at least the early 1980s
(Amaya et al., 2016; Bond et al., 2015). This warming has been attributed to reduced ocean-to-atmosphere
heat flux associated with weaker surface winds and an anomalous high-pressure ridge over the far north
Pacific, which also contributed to a severe drought in western North America (Bond et al., 2015; Seager
et al., 2015; Swain et al., 2014). In the subsequent two years, further record-breaking warming occurred
throughout the NE Pacific, from the midlatitudes to the subtropics (Amaya et al., 2016; Gentemann et al.,
2017; Zaba & Rudnick, 2016). This “marine heatwave” was coincident with a transition of the Pacific
Decadal Oscillation (PDO) to its warm phase (Su et al., 2017). Elevated surface temperatures were associated
with a sharp phytoplankton reduction and toxic algal bloom along the western North American coast, nega-
tively impacting fisheries (Cavole et al., 2016). It has been argued that tropical-extratropical teleconnections
involving the weak boreal fall 2014 El Niño led to the widespread NE Pacific warming patterns in 2014 and
2015 that followed the emergence of the midlatitude NE Pacific Blob in 2013 (Di Lorenzo & Mantua, 2016).
It has also been suggested that dynamics involving the very strong El Niño that peaked in magnitude in late
2015 contributed to the ocean warming signal of the marine heatwave along the western Baja California
coast (Robinson, 2016) and, more broadly, to the signal along the western North American coast (Jacox
et al., 2018). However, no study has quantified the local forcingmechanisms of the robust signal of themarine
heatwave in the subtropical region of the NE Pacific off Baja California, from an energy budget perspective.
Here we examine these local contributions through an observational analysis of the energy budget of the
upper ocean.
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The climate of the subtropical NE Pacific is characterized by cool sea surface temperature (SST) compared to
the zonal mean accompanied by extensive and persistent stratiform clouds occurring within the planetary
boundary layer. These clouds reflect up to around 100 W/m2 (>20%) of incoming solar radiation back to
space (Hartmann et al., 1992) and are tightly coupled to fluctuations in underlying SST. Relatively warmer
SST suppresses overlying cloudiness by altering vertical gradients of temperature and moisture (Bretherton
et al., 2013; Klein et al., 2017; Klein & Hartmann, 1993; Rieck et al., 2012; van der Dussen et al., 2015). In turn,
suppressed cloudiness allows more solar radiation to reach the underlying ocean surface, further increasing
SST. Alternatively, relatively cooler SST promotes cloudiness, further decreasing SST. Model-based evidence
suggests that this positive cloud-SST feedback amplifies anomalies, regardless of their sign, from the clima-
tological mean SST (Bellomo et al., 2014, 2015, 2016; Brown et al., 2016; Burgman et al., 2017; Myers et al.,
2017, 2018). To what extent did this feedback contribute to the marine heatwave in the stratiform cloud
region off Baja California? We address this question by using observation-based data to quantify the contri-
butions of surface radiative and turbulent heat fluxes and oceanic processes to the energy budget of the
ocean mixed layer in the nearly two-year period of anomalously warm SST in the region that peaked roughly
in September 2015.

2. Data and Methods

We express the anomalous mixed layer energy budget at each grid box and month as

ρcph∂T=∂t
� �0 ¼ F

0
rad þ F

0
turb � ρcph V ·∇Tð Þ� �0 þ RES

0
: (1)

Here primes denote anomalies from climatological monthly means (i.e., deviations from the seasonal cycle),
ρ = 1,025 kg/m3 is the density of seawater, cp = 3994 J · kg�1 · K�1 is the specific heat of seawater at constant

pressure, h is depth of the mixed layer, T is vertically averaged temperature in the mixed layer, F
0
rad is anom-

alous net (downwelling minus upwelling) surface radiative flux, F
0
turb is anomalous surface turbulent (sensible

plus latent) heat flux, V is vertically averaged horizontal velocity in the mixed layer, and RES
0
is a residual flux

computed to close the budget that is inferred to be due to vertical mixing at the base of the mixed layer.
Equation (1) can be written as

ρcph∂T=∂t
� �0 ¼ F

0
rad þ F

0
turb þ F

0
ocean (2)

where F
0
ocean ¼ – ρcph V ·∇Tð Þ� �0 þ RES

0
is the anomalous total oceanic heat flux into the mixed layer due to

horizontal advection and vertical mixing.

We obtain observation-based estimates of h, temperature, and horizontal velocity from the National Centers
for Environmental Prediction Global Ocean Data Assimilation System (GODAS), which is constructed from a
numerical ocean model with assimilation of ocean profile observations and given on a 1/3° latitude × 1° long-
itude grid (Behringer, 2007; Behringer & Xue, 2004). h is a product of a K-profile parameterization mixing
scheme (Large et al., 1994). T and V are computed as the vertically averaged temperature and horizontal velo-
city spanning all model levels (given at 10-meter resolution) centered at or above h. The temperature ten-
dency ∂T/∂t is approximated at each month t as T for the subsequent month subtracted by T for the
previous month, divided by two months. T and h were bilinearly interpolated to a 1° × 1° grid in order for
ρcph∂T/∂t to match the resolution of the other data sets. V · ∇T is approximated using centered finite differ-
encing in spherical coordinates using the native GODAS grid, which was then bilinearly interpolated to a
1° × 1° grid. Practically identical results are obtained if we substitute T with SST from the National Oceanic
and Atmospheric Administration (NOAA) Optimum Interpolation (OI) SST data set V2 (Reynolds et al.,
2002), which is given on a 1° × 1° grid.

Frad is provided by the Clouds and the Earth’s Radiant Energy System (CERES) Energy Balanced and Filled data
set version 2.8, given on a 1° × 1° grid (Kato & Loeb, 2013). This product is based on a radiative transfer model
that estimates surface radiative fluxes using cloud, aerosol, temperature, and humidity information from
satellite retrievals and an atmospheric reanalysis. Importantly, the estimated surface fluxes are physically con-
sistent with satellite measurements of radiation at the top of the atmosphere. Two estimates of Fturb are taken
from the Objectively Analyzed Air-sea Fluxes (OAFlux) Project (Yu, Jin, & Weller, 2008), given on a 1° × 1° grid,
and the European Centre for Medium-Range Weather Forecasts Interim Re-Analysis (ERA-Interim; Dee et al.,
2011), which was bilinearly interpolated to a 1° × 1° grid. OAFlux provides estimates of surface sensible and
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latent heat fluxes using bulk flux parameterizations and objective analysis of surface meteorological informa-
tion from satellite retrievals and three different atmospheric reanalyses. ERA-Interim predicts surface sensible
and latent heat fluxes using an atmospheric forecast model initialized by observations.

3. Mixed Layer Energy Budget off Baja California During the Marine Heatwave

Figure 1a shows themonth-to-month change in anomalous heat content of the oceanmixed layer, (ρcph∂T/∂t)
0
,

averaged between January 2014 and September 2015. This quantity represents the energy gained by the
mixed layer during this period, revealing a core of maximum heating in the region off Baja California outlined
in black (15°N–30°N, 220°E–245°E). This accumulation of energy spans the approximate onset and peak of
anomalously warm SST that occurred in this region, where temperatures reached values higher than any
observed since 1951 (Figures 2a and S1 and Text S1; September 2015 was the month just before the peak
SST; Huang et al., 2014). Contemporaneously, the PDO shifted to its warm phase (Figure S1).

The average surface radiative flux monthly anomalies, F
0
rad, from CERES are strongly positive over the core of

maximum warming (Figure 1b), with a spatial mean of 6.7 ± 1.8 W/m2 (95% sampling uncertainty; Text S2)
over the outlined region. This value was the strongest 21-month running mean anomaly centered
outside of 2014 and 2015 in the CERES record (Figure 2b). Observed average turbulent heat flux monthly

anomalies, F
0
turb, from OAFlux are small and mostly negative over the warming core, with a spatial mean of

�0.6 ± 2.2 W/m2 that is not significantly different from zero (Figure 1c). The average total oceanic heat flux

monthly anomalies, F
0
ocean , are mostly positive over the region, with a spatial mean of 3.8 ± 3.3 W/m2

(Figure 1d). About half of the total oceanic flux appears to have been due to anomalously positive yet statis-
tically insignificant horizontal advection, �(ρcph(V · ∇T))

0
(Table 1, bottom row, and Figure S2). The other half

is attributable to anomalously positive yet statistically insignificant residual oceanic flux, RES
0
, presumably

due to weaker-than-average vertical mixing at the base of the mixed layer (Table 1, bottom row, and

Figure S2). Spatially averaged values of F
0
turb, F

0
ocean, and RES

0
computed using ERA-Interim turbulent flux data

instead are similar to those obtained using OAFlux (Table 1, bottom row).

These results show that anomalously positive radiative flux was the dominant component of the energy
budget of the ocean mixed layer during this period of warming off Baja California, implicating the
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Figure 1. Components of anomalous energy budget of ocean mixed layer during January 2014 to September 2015, including temporally averaged (a) (ρcph∂T/∂t)
0

from GODAS, (b) F
0
rad from CERES, (c) F

0
turb from OAFlux, and (d) F

0
ocean obtained as a residual in equation (2). Anomalies are relative to 2001–2015 climatological

monthly means. Positive values indicate energy gained by the ocean. The maximum warming region is outlined in black.
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atmosphere as a driver of the ocean heating. Radiative flux anomalies
were also large and positive in each of two shorter nonoverlapping
intervals collectively spanning January 2014 to September 2015,
separated according to when turbulent heat flux anomalies changed
from positive to strongly negative in early boreal spring 2015 and
when the total oceanic heat flux ceased to be positive (Table 1, top
two rows, and Figures 2c and 2d and S3 and S4). In the first interval,
reduced heat loss from the ocean to the atmosphere and
suppressed vertical mixing in the upper ocean were likely induced
by weaker trade winds associated with an expansive anomalous
cyclone in the NE Pacific (Figure S5). Independent observational ana-
lyses also suggest that suppressed vertical mixing and upwelling
associated with weak winds contributed to warm SST anomalies
along the Southern California and western Baja California coastlines
in 2014 and 2015 (Robinson, 2016; Zaba & Rudnick, 2016). The anom-
alous cyclone and associated turbulent and oceanic fluxes were likely
driven in part by the boreal fall 2014 El Niño (Amaya et al., 2016; Di
Lorenzo & Mantua, 2016). Model simulations also suggest a link
between El Niño and subtropical NE Pacific SST anomalies via altera-
tion of wind-driven surface fluxes (Yu, Liu, & Mechoso, 2000).
Relaxed-trades-driven warming was then followed by enhanced sen-
sible and latent heat loss caused by very warm SST in the second
interval (Figures 2a and 2c and S4), marking the emergence of the
negative turbulent heat flux feedback (Park et al., 2005). Even during
this latter period of turbulent heat flux damping, very warm SST
persisted due to anomalously positive radiative flux.

4. Role of Low Clouds

Next we identify which atmospheric process caused the increase in
absorbed surface radiation responsible for much of the anomalous
ocean heating. Figure 3a reveals that total cloud fraction retrieved
by the Moderate Resolution Imaging Spectroradiometer (MODIS)
onboard the TERRA satellite (Minnis et al., 2011; Text S1) between

January 2014 and September 2015 over the subtropical NE Pacific was much smaller than average.
Moreover, the maximum negative anomalies were co-located with those of radiative flux. The negative
anomalies resulted from reduced coverage of boundary layer clouds, as captured by vertically resolved cloud
fraction from the Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO; Chepfer et al.,
2010; Cesana et al., 2016), illustrated in Figure 3b. The CALIPSO observations show a decrease of cloud
amount below 2 km within the warming region. The negative low-level cloud fraction anomalies had their
strongest 21-month running mean value since 2001 and possibly since 1984 (Figures 3c and S6; Garay et al.,
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Figure 2. Time series of anomalies relative to 2001–2015 climatological monthly
means of (a) NOAA OI SST, (b) F

0
rad from CERES, (c) F

0
turb from OAFlux, and

(d) F
0
ocean computed as a residual in equation (2) averaged over the subtropical NE

Pacific (15°N–30°N, 220°E–245°E, outlined in black in Figure 1). In each panel,
the thin black line, bars, and thick black line represent monthly mean, annual
mean, and 21-month running mean anomalies, respectively. Running means are
computed for a given month by averaging the monthly means 10 months
before to 10 months after that month. The thick vertical lines demarcate the
approximate onset and peak of the record-breaking warm SST anomalies.

Table 1
Components of Anomalous Energy Budget of Ocean Mixed Layer Spatially Averaged Over the Subtropical NE Pacific (15°N–30°N, 220°E–245°E, Outlined in Black in
Figure 1) and Temporally Averaged Over Different Time Periods Described in the Text

F
0
rad F

0
turb F

0
ocean �(ρcph(V · ∇T))

0
RES

0

CERES OAFlux ERA OAFlux ERA GODAS OAFlux ERA

January 2014 to February 2015 5.5 ± 1.6 3.6 ± 2.6 5.8 ± 3.8 6.4 ± 4.2 4.2 ± 5.3 0.8 ± 2.8 5.5 ± 4.5 3.3 ± 5.6
March 2015 to September 2015 9.1 ± 3.7 �9.2 ± 2.9 �14.3 ± 6.1 �1.4 ± 5.2 3.7 ± 7.8 3.7 ± 7.4 �5.2 ± 6.1 0 ± 8.7
January 2014 to September 2015 6.7 ± 1.8 �0.6 ± 2.2 �0.9 ± 3.8 3.8 ± 3.3 4 ± 4.1 1.8 ± 3.3 1.9 ± 3.9 2.2 ± 5

Note. Also shown is/are the data set /s used to compute each term. Units are W/m2. The error bars span 95% confidence intervals, and boldface and italicized text
indicates statistical significance at the 95% level.
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2008; Norris & Evan, 2015; Rossow & Schiffer, 1999). In a similar cloud regime in the Atlantic, it has been esti-
mated that a one percent reduction in cloud fraction generates an additional 0.77 W/m2 of net radiation
absorbed by the ocean surface (Bellomo et al., 2016). Using this value and the average of TERRA-MODIS,
AQUA-MODIS, and CALIPSO negative low-level cloud fraction anomalies of ~9 ± 1.3% (long-term annual
mean cloud fraction is 57%; Text S1 and S2), we estimate that an additional 6.9 ± 1 W/m2 of radiation was
absorbed by the subtropical NE Pacific Ocean between January 2014 and September 2015. Since this is nearly
identical to the anomalous surface radiative flux from CERES noted above and to the average anomalous sur-
face net cloud radiative effect (CRE) during this period (7 ± 1.8 W/m2; Figure S7), we conclude that the
increase in downwelling radiation was caused by a reduction in stratiform cloud coverage.

Thus, once warm SST anomalies in the subtropical NE Pacific were established in early 2014, a positive feed-
back between SST and stratiform cloudiness was a critical amplifier of the warm anomalies that kept increas-
ing to unprecedented levels until late 2015, despite the emergence of strong turbulent heat flux damping.
This amplifying process therefore likely contributed to the transition of the PDO to its warm phase, which
corroborates model evidence suggesting that a positive cloud feedback drove a large portion of the PDO’s
shift to its cool phase in the late 1990s (Burgman et al., 2017). The feedback moreover may have contributed
indirectly to the very strong 2015/2016 El Niño if the subtropical SST anomalies were communicated to the
equatorial tropics through meridional mode dynamics (Feng et al., 2014; Paek et al., 2017; Tseng et al., 2017).
Finally, the importance of this reinforcing cloud-SST interaction off Baja California was not restricted to the
marine heatwave, as suggested by the positive correlation between regional anomalies of surface radiative
flux (Figure 2b) and SST (Figure 2a; r = 0.6 and r = 0.9 for unfiltered and 21-month running mean monthly
anomalies, respectively).

5. Energy Budget of the Blob

Given the evidence for the importance of cloud feedback in the Baja California region of the NE Pacific marine
heatwave, such a process might also have played a role in locally amplifying the warm SST Blob anomaly in
the midlatitude NE Pacific that emerged in 2013, especially since stratiform clouds are abundant during
boreal summer in this region (Klein & Hartmann, 1993). We address this possibility with the same observa-
tions and techniques used so far in the paper. Figure 4 shows the components of the anomalous mixed
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Figure 3. (a) Total cloud fraction anomalies relative to 2001–2015 climatological monthly means from TERRA-MODIS averaged from January 2014 to September
2015, (b) spatial and meridional mean cloud fraction anomalies relative to 2007–2016 climatological monthly means as a function of altitude from CALIPSO aver-
aged over the same period, and (c) time series of subtropical NE Pacific low-level cloud fraction anomalies relative to 2001–2015 climatological monthly means from
TERRA-MODIS. The averages in (b) and (c) are computed within the region outlined in black in (a). The lines and bars in (c) are as in Figure 2. Note that the red shading
and bars indicate negative cloud fraction anomalies, while the blue indicates positive anomalies.
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layer energy budget averaged between January and December 2013, when warm SST anomalies in the
midlatitude NE Pacific (40°N–50°N, 200°E–220°E) sharply increased to their peak (Figure S8; December 2013
was the month just before the peak SST). Even though low-level cloud fraction was reduced slightly over
the core of maximum heating in the midlatitude NE Pacific during this period and much more so
afterward when warm SST anomalies persisted (Figures 4a and S9), radiative flux anomalies were
negligible, with spatially averaged annual means of 0.4 ± 1.7 W/m2 in 2013 and 0 ± 1 W/m2 in 2014
(Figures 4b and S8). This phenomenon can be explained by the substantial offset between positive
anomalies of surface shortwave CRE and negative anomalies of longwave CRE, having spatial mean values
over the midlatitude NE Pacific of 2.5 ± 1.7 and �3.2 ± 0.9 W/m2 in 2013 and 3.5 ± 1.5 and �3.4 ± 1 W/m2

in 2014 (Figure S10). Such an offset might simply reflect the fact that incident solar radiation at the top of
the atmosphere decreases poleward, which reduces the surface shortwave radiative impact of a given
change in cloud fraction (for the same cloud optical depth) compared to lower latitudes (Zelinka et al.,
2012). Regardless of the physics explaining the offset, it is nonetheless clear that a positive cloud feedback
did not amplify or increase the persistence of this warm water Blob.

Instead, Figures 4c and 4d illustrate that a combination of anomalous wind-driven turbulent heat flux and
total oceanic heat flux provided the principal contribution to the anomalous energy budget of the ocean
mixed layer during this January-to-December 2013 warming event. Spatially averaged turbulent flux, total
oceanic flux, and horizontal advection anomalies of 12.7 ± 4.7, 10 ± 8.2, and 9.7 ± 5.1 W/m2 within the region
of maximumwarming in 2013 indicate that weaker surface westerlies were responsible for both reduced sur-
face turbulent heat flux loss and Ekman transport from cooler northern waters (Table S1 and Figures S5, S8,
and S11). Spatially averaged values computed using turbulent flux data from ERA-Interim instead suggest
that almost all of the warming was driven by anomalous sensible and latent heat fluxes and that the total
oceanic flux was not discernibly different than average (Table S1). By explicitly quantifying which surface
fluxes contributed to the warming, this analysis expands upon previous findings that identified reduced sur-
face heat loss and horizontal advection as key to the occurrence of the Blob (Bond et al., 2015; Liang
et al., 2017).

6. Conclusions

An analysis of the energy budget of the ocean mixed layer reveals that distinct mechanisms were responsible
for the record-breaking warm subtropical anomalies, off Baja California, and warm midlatitude anomalies,
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Figure 4. As in Figure 1 but for January 2013 to December 2013.
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near the Gulf of Alaska, of the 2013–2015 NE Pacific marine heatwave. Off Baja California, a very large
decrease in low cloud coverage and a very large increase in the amount of solar radiation reaching the ocean
surface over a nearly two-year period explain why SST in the region warmed to such a high magnitude. Over
the Gulf of Alaska region, a very large decrease in ocean-to-atmosphere turbulent heat flux combined with
anomalous heating of the mixed layer due to ocean processes over a one-year period explains the emer-
gence of the intense warm SST Blob anomaly. Offsetting components of surface shortwave and longwave
CRE despite a decrease in low cloud coverage over the Blob implies that the reduction in cloudiness did
not act as a positive feedback on SST in that midlatitude region of the NE Pacific marine heatwave.

Contrastingly, our results provide observational evidence strongly suggesting that low clouds intensely
amplified surface temperature anomalies in the subtropical region of the NE Pacific marine heatwave. This
amplification contributed to a transition to the warm phase of Pacific decadal variability. These
observation-based findings demonstrate that a positive feedback between low clouds and ocean surface
temperature can be an order one process in regional climate fluctuations.
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